

From Carbon Footprint to Social Economic Benefits Mactan Cebu International Airport WGBC / HKGBC Workshop 29.11.2019

Terminal 1

Terminal Z

65,000 SQM

7 Contact Stands

4.1 Millions Passenger Per Annum Opening Day

Expansion for Growth – 9 MAP

®®

Phase 2

Phase 1

Tropical Pavilion – Light, Airy, Sustainable, Contextual, Friendly...

Y;

Climatic and Locality Considerations

Learning from a Tropical Vernacular

High pitched roof / Low eaves / Light weight / Locally sourced material

Passive Design Approach

Wall / Window ratio 0.6

Building Systems Performance

MEP Design

7

Baseline ASHRAE 90.1-2007	254 kWh /m2 /yr	
Design Target	176 kWh /m2 /yr	31%
Measured Results (SCADA)	160 kWh /m2 /yr	37%

Solar Power G	Carbon Reduction / yr			
Terminal 1 (55,000m ²)	165 kWh /m ²	1.64 MW	70% (peak hours)	130 tons
Terminal 2 (65,000m ²)	160 kWh /m ²	5 MW (planned)	3 – 5% (target annual reduction)	TBC

An Encompassing Sustainability Strategy

- Zero waste
- Low embodied energy
- Locally sourced material
- Local industries involvement
- Local employment
- Long term maintenance
- Create Civic Pride

Conventional Steel Construction

Timber Frame Construction

Staging to facilitate geometric setting out and site welding Lightweight structure requires less on-site fabrication and no need for formwork

Roof Design with Steel Structure

Roof Design with Glulam Structure

Construction Mockup

RUBNE

0.0vda

Certificate number: HFA-COC-0287 Date of first issuance: 05.09.2008 Date of issuance: 01.04.2015 Valid to: 30.06.2018

Terminal Roof Area 25,000 sq.m

Construction Period 6 months *

Major Cost / Time Savings & Risk Mitigation

tama EVAAIR

Sustainable Development Principles

Clean Energy

16 12

A Simple, Modest & Easy to Build Solution

Extensive use of Prefabrication to Minimize Waste

Choice of Material with Natural Self-finish

An Architecture devoid of Decoration

2

Clark International Airport, The Philippines

Performance beyond Expectations:

"Simplicity, Add Lightness"

Colin Chapman of Lotus Car