

Annex 1: List of Retro-fitting Solutions

A. HVA	C - Chilled Water Side
A1	Conversion of air-cooled chillers to water-cooled chillers
A2	Replace inefficient chillers to more efficient chillers + review new chiller
	combination during life cycle replacement
A3	Improve pump efficiency by converting constant speed pumps to variable
	speed pumps
A4	Convert de-coupler or differential by-pass chilled water system to variable
	primary flow system
A5	Convert centralised chilled water pumps circuit to de-centralised pumping
	systems with in-line pumps on each equipment/floor/zone
A6	Install control valves to control chilled water flowrate through differential
	pressure sensors of supply and return temperature of equipment (AHU) or
	sub-circuits (risers, zones)
A7	Chiller plant optimisation monitoring and control system using smart/AI
	technologies with required metering and sensing devices
A8	Install tube cleaning and other cleaning systems for chiller's water-cooled
	condenser and condensing water circuit
A9	Separate risers, circuits or systems for different equipment (e.g., AHU, FCU,
	chilled ceiling, CRAC unit, etc.) with different chilled water requirements so
	that some chillers can operate at a higher chilled water supply temperature all
	or part of a year
A10	Provide condensing water only to CRAC unit of server rooms instead of chilled
	water
A11	Cooling tower optimisation control system
A12	Replace cooling tower constant speed fan by variable speed control
A13	Replace inefficient cooling tower by high-efficient cooling tower
A14	Consideration of using water spray system to increase the cooling tower
	efficiency
A15	Recovery of condensate water for cooling tower water supply
A16	Electromagnetic water conditioning device for seawater system
A17	Installation of chiller inlet/outlet temperature sensors on top of chiller internal
	temperature sensors to enable self-calibration
A18	Automated Chiller Optimisation using machine learning coupled with digit twin

Hong Kong Green Building Council Limited 香港緑色建築議會有限公司 1/F Jockey Club Environmental Building 77 Tat Chee Avenue, Kowloon Tong, Hong Kong 香港九龍塘達之路77號賽馬會環保樓一樓 Tel +852 3994 8888 Fax +852 3994 8899 www.hkgbc.org.hk

B. HVAC	- Air Side
B1	Replace traditional induction motor Fan Coil Unit (FCU) with variable speed
	EC Motor incorporate with smart control thermostat or DDC controller
B2	Replace air filters with lower pressure drop air filters using sonic, ionisation or
	other new technologies which can improve filter efficiency
B3	Replace silencers with active silencers (noise cancellation techniques) to
	reduce total fan pressure
B4	Replace centrifugal fan in AHU/PAU using EC Plug Fan
B5	Convert constant air volume (CAV) system to variable air volume (VAV)
	system
B6	Enlarge fresh air inlet and air duct to allow 100% or higher % of fresh air for
	free cooling in autumn –winter seasons on days with low outdoor RH
B7	Change from VAV system to dry fan coil unit systems with pre-treated fresh air
	using desiccant dehumidification
B8	Use heat exchanger or regenerative indirect evaporative cooling system to
	pre-cool the primary fresh air by the exhaust air
B9	Use radiant cooling technologies such as chilled beam or chilled ceiling
B10	Demand control fresh air system to reduce fresh air amount when the IAQ
	meets the desired level according to IAQ sensor input while coupling with
	variable exhaust system
B11	Use spot cooling, ceiling fans for certain locations such as corridors and lift
	lobbies
C. Electri	cal system - Lighting, Electrical Installation and Lift & Escalator
Lighting	
C1	Retrofit office layout to optimise as much as possible with daylight
	implementation
C2	Use zone control of lighting layout
C3	Implementation of low Lighting to Power Ratio by appropriate type of lamp
	source
C4	Adopt Nano coated reflector luminaires
C5	Use occupancy sensor
C6	Adopt task light with lower background lighting
Power Ar	Retrofit power analyser to identify the opportunity of having the system loading
C7	balanced

Hong Kong Green Building Council Limited 香港緑色建築議會有限公司 1/F Jockey Club Environmental Building 77 Tat Chee Avenue, Kowloon Tong, Hong Kong 香港九龍塘達之路77號賽馬會環保樓一樓 Tel +852 3994 8888 Fax +852 3994 8899 www.hkgbc.org.hk

		ΨL
C8	Identify occupancy pattern and optimise the operation mode	
C9	Metering provision	
C10	Retrofit power meter to monitor real-time consumption, control demand and	
	increase tenant accountability	
D. Sma	rt Control Systems	
D1	Incorporate a smart building energy management platform with IoT	
	infrastructure that can collect building operation data, perform monitoring and	
	evaluation; demand control and optimisation of the various systems	
D2	Install meters or by other means to visualise energy consumption data for	
UΖ	demand side energy management	
D3	Implementation of various AI Energy Optimisation Solutions to all major	
	equipment with high energy consumptions	
D4	Integrating people counting sensors with water-side & air-side optimisation	
	and smart lift control	
E. Serv	ver Room/ Data Centre	
E1	Replace Uninterrupted Power System (UPS) by more energy efficient system	
E2	Install enclosure to separate hot-aisle/cold-aisle	
F. Carp	ark	
F1	Use zoning for carpark operation	
F2	Using demand control to vary exhaust air/fresh air by CO and temperature	
٢Z	sensors	
F3	Use induction units to eliminate ducting and hence reduce fan power	
G. Othe	ers – Heating and Building Envelope	
Heating		
G1	Replace electric or gas heater with heat pump as the heat source to reduce	
	the energy consumption for heating.	
G2	g Envelope Solar film, spray or solar reflective blind on building façade	
G2 G3	Add a second plane of glazing behind the building façade	
G4	Coating on roof that can irradiate heat to the atmosphere	
G5	Install green roofs.	
G6	Use rotating door or double door or air curtain to reduce infiltration	
G7	Natural ventilation	
G8	Renewable energy	